INDIAN SCHOOL MUSCAT
 DEPARTMENT OF MATHEMATICS
 CLASS XII
 DIFFERENTIAL EQUATIONS

1Find the order and degree of the following differential equations:

1. $\frac{d^{3} y}{d x^{3}}+\cos \left(\frac{d^{2} y}{d x^{2}}\right)=3$
$2 \cdot \frac{d^{5} y}{d x^{5}}+\cos \left(y^{\prime \prime \prime}\right)=3$
2. $\left(y^{\prime \prime}\right)^{2}+\left(y^{\prime}\right)^{3}+y^{4}=0$
3. Form the differential equation representing the family of ellipses having foci
x-axis and the centre at the origin.
4. Form the differential equation of the family of circles in the quadrant which touch the coordinate axes.
5. Solve: $x y(y+1) d y=\left(x^{2}+1\right) d x$
6. Solve: $(1-y) x \frac{d y}{d x}+(1+x) y=0$
7. Solve: $\frac{d y}{d x}=1-\frac{\cos x}{1+\cos x}$
8. Solve: $(\sin x+\cos x) d y+(\cos x-\sin x) d x=0$
9. Solve: $\sec ^{2} y\left(1+x^{2}\right) d y+2 x \tan y d x=0$ given that $y(1)=\frac{\pi}{4}$.
10. Solve: $\left(1+y^{2}\right)(1+\log x) d x+x d y=0$, given $y(1)=1$
10.Solve: $\log \left(\frac{d y}{d x}\right)=3 x+4 y$ given that $y=0$ when $x=0$.
11. Solve: $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$
12. Solve: $\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y$
13. Solve: $\quad x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
14. Solve: $\left(2 x^{2} y+y^{3}\right) d x+\left(x y^{2}-3 x^{3}\right) d y=0$
15. Solve: $\quad x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
16. Solve : $\quad x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$
17. Solve: $\quad \frac{d y}{d x}+\frac{y}{2 x}=3 x^{2}$
18. Solve: $(x+y) \frac{d y}{d x}=1$
19. Solve: $\quad y d x+\left(x-y^{3}\right) d y=0$
20. Solve: $\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d y}{d x}=1(x \neq 0)$.
21. Solve: $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right)=d y y=0$ when $x=0$.
22. Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinate of any point on the curve exceeds the magnitude of the tangent to the curve at that point by 5 .
23. In a bank principal increases continuously at the rate of 5\% per year. An Amount of Rs1000 is deposited with this Bank, how much will it worth after 10 years ($e^{0.5}=1.648$)
